在Linux中,信号是进程间通讯的一种方式,它采用的是异步机制。当信号发送到某个进程中时,操作系统会中断该进程的正常流程,并进入相应的信号处理函数执行操作,完成后再回到中断的地方继续执行。
需要说明的是,信号只是用于通知进程发生了某个事件,除了信号本身的信息之外,并不具备传递用户数据的功能。
1 信号的响应动作
每个信号都有自己的响应动作,当接收到信号时,进程会根据信号的响应动作执行相应的操作,信号的响应动作有以下几种:
- 中止进程(Term)
- 忽略信号(Ign)
- 中止进程并保存内存信息(Core)
- 停止进程(Stop)
- 继续运行进程(Cont)
用户可以通过
signal
或sigaction
函数修改信号的响应动作(也就是常说的“注册信号”,在文章的后面会举例说明)。另外,在多线程中,各线程的信号响应动作都是相同的,不能对某个线程设置独立的响应动作。2 信号类型
Linux支持的信号类型可以参考下面给出的列表。
2.1 在POSIX.1-1990标准中的信号列表
信号 | 值 | 动作 | 说明 |
---|---|---|---|
SIGHUP | 1 | Term | 终端控制进程结束(终端连接断开) |
SIGINT | 2 | Term | 用户发送INTR字符(Ctrl+C)触发 |
SIGQUIT | 3 | Core | 用户发送QUIT字符(Ctrl+/)触发 |
SIGILL | 4 | Core | 非法指令(程序错误、试图执行数据段、栈溢出等) |
SIGABRT | 6 | Core | 调用abort函数触发 |
SIGFPE | 8 | Core | 算术运行错误(浮点运算错误、除数为零等) |
SIGKILL | 9 | Term | 无条件结束程序(不能被捕获、阻塞或忽略) |
SIGSEGV | 11 | Core | 无效内存引用(试图访问不属于自己的内存空间、对只读内存空间进行写操作) |
SIGPIPE | 13 | Term | 消息管道损坏(FIFO/Socket通信时,管道未打开而进行写操作) |
SIGALRM | 14 | Term | 时钟定时信号 |
SIGTERM | 15 | Term | 结束程序(可以被捕获、阻塞或忽略) |
SIGUSR1 | 30,10,16 | Term | 用户保留 |
SIGUSR2 | 31,12,17 | Term | 用户保留 |
SIGCHLD | 20,17,18 | Ign | 子进程结束(由父进程接收) |
SIGCONT | 19,18,25 | Cont | 继续执行已经停止的进程(不能被阻塞) |
SIGSTOP | 17,19,23 | Stop | 停止进程(不能被捕获、阻塞或忽略) |
SIGTSTP | 18,20,24 | Stop | 停止进程(可以被捕获、阻塞或忽略) |
SIGTTIN | 21,21,26 | Stop | 后台程序从终端中读取数据时触发 |
SIGTTOU | 22,22,27 | Stop | 后台程序向终端中写数据时触发 |
注:其中
SIGKILL
和SIGSTOP
信号不能被捕获、阻塞或忽略。2.2 在SUSv2和POSIX.1-2001标准中的信号列表
信号 | 值 | 动作 | 说明 |
---|---|---|---|
SIGTRAP | 5 | Core | Trap指令触发(如断点,在调试器中使用) |
SIGBUS | 0,7,10 | Core | 非法地址(内存地址对齐错误) |
SIGPOLL | Term | Pollable event (Sys V). Synonym for SIGIO | |
SIGPROF | 27,27,29 | Term | 性能时钟信号(包含系统调用时间和进程占用CPU的时间) |
SIGSYS | 12,31,12 | Core | 无效的系统调用(SVr4) |
SIGURG | 16,23,21 | Ign | 有紧急数据到达Socket(4.2BSD) |
SIGVTALRM | 26,26,28 | Term | 虚拟时钟信号(进程占用CPU的时间)(4.2BSD) |
SIGXCPU | 24,24,30 | Core | 超过CPU时间资源限制(4.2BSD) |
SIGXFSZ | 25,25,31 | Core | 超过文件大小资源限制(4.2BSD) |
注:在Linux 2.2版本之前,
SIGSYS
、SIGXCPU
、SIGXFSZ
以及SIGBUS
的默认响应动作为Term,Linux 2.4版本之后这三个信号的默认响应动作改为Core。2.3 其它信号
信号 | 值 | 动作 | 说明 |
---|---|---|---|
SIGIOT | 6 | Core | IOT捕获信号(同SIGABRT信号) |
SIGEMT | 7,-,7 | Term | 实时硬件发生错误 |
SIGSTKFLT | -,16,- | Term | 协同处理器栈错误(未使用) |
SIGIO | 23,29,22 | Term | 文件描述符准备就绪(可以开始进行输入/输出操作)(4.2BSD) |
SIGCLD | -,-,18 | Ign | 子进程结束(由父进程接收)(同SIGCHLD信号) |
SIGPWR | 29,30,19 | Term | 电源错误(System V) |
SIGINFO | 29,-,- | 电源错误(同SIGPWR信号) | |
SIGLOST | -,-,- | Term | 文件锁丢失(未使用) |
SIGWINCH | 28,28,20 | Ign | 窗口大小改变时触发(4.3BSD, Sun) |
SIGUNUSED | -,31,- | Core | 无效的系统调用(同SIGSYS信号) |
注意:列表中有的信号有三个值,这是因为部分信号的值和CPU架构有关,这些信号的值在不同架构的CPU中是不同的,三个值的排列顺序为:1,Alpha/Sparc;2,x86/ARM/Others;3,MIPS。
例如
SIGSTOP
这个信号,它有三种可能的值,分别是17、19、23,其中第一个值(17)是用在Alpha和Sparc架构中,第二个值(19)用在x86、ARM等其它架构中,第三个值(23)则是用在MIPS架构中的。3 信号机制
文章的前面提到过,信号是异步的,这就涉及信号何时接收、何时处理的问题。
我们知道,函数运行在用户态,当遇到系统调用、中断或是异常的情况时,程序会进入内核态。信号涉及到了这两种状态之间的转换,过程可以先看一下下面的示意图:
接下来围绕示意图,将信号分成接收、检测和处理三个部分,逐一讲解每一步的处理流程。
3.1 信号的接收
接收信号的任务是由内核代理的,当内核接收到信号后,会将其放到对应进程的信号队列中,同时向进程发送一个中断,使其陷入内核态。
注意,此时信号还只是在队列中,对进程来说暂时是不知道有信号到来的。
3.2 信号的检测
进程陷入内核态后,有两种场景会对信号进行检测:
- 进程从内核态返回到用户态前进行信号检测
- 进程在内核态中,从睡眠状态被唤醒的时候进行信号检测
当发现有新信号时,便会进入下一步,信号的处理。
3.3 信号的处理
信号处理函数是运行在用户态的,调用处理函数前,内核会将当前内核栈的内容备份拷贝到用户栈上,并且修改指令寄存器(eip)将其指向信号处理函数。
接下来进程返回到用户态中,执行相应的信号处理函数。
信号处理函数执行完成后,还需要返回内核态,检查是否还有其它信号未处理。如果所有信号都处理完成,就会将内核栈恢复(从用户栈的备份拷贝回来),同时恢复指令寄存器(eip)将其指向中断前的运行位置,最后回到用户态继续执行进程。
至此,一个完整的信号处理流程便结束了,如果同时有多个信号到达,上面的处理流程会在第2步和第3步骤间重复进行。
沒有留言:
張貼留言